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TECHNICAL NOTE 4375

APPROXIMATE SOLUTIONS OF A CLASS OF SIMILARITY FQUATIONS FOR THREE-
DIMENSIONAL, LAMINAR, INCOMPRESSIBLE BOUNDARY~LAYER FLOWS

By Arthur G. Hansen end Howard Z. Herzig

SUMMARY

An anelysis is presented for obteining approximate solutions of the
similarity equations for three-dimensional laminar-boundary-leyer flows
over a flat surface under main-flow streamlines that are translates and
representable as infinite series expansions. For the perticular case of
streamline shapes described by a power of the distance along the surface
from the leading edge, relatively simple expressione are obtained for
flow deflection at the boundary surface, limiting streamline shspe, and
shear stress at the surface.

INTRODUCTION

In recent years, a great desl of sttention has been focused on theo-
reticel investigabtions of three-dimensionsl incompressible boundary-layer
flows. One class of investigetions, having applicetion to internal flow
problems in turbomachines end flow over wings at high eltitudes, has been
concerned with finding exact solutions of the boundary-layer equations
when the boundary lsyer develops over a flat surface (e.g., refs. 1 to 8).
To date, all exact solutions have been based on simllarity-type boundsry-
layer analyses. The essence of this technique involves the reduction of
the partial differential eguations for the boundary lsyer to a system of
ordinary differentisl equations. The solutions for the actual boundary-
layer flow are then obtained from the solutions of the ordinary differ-
entisl equations. It 1s genersally necessary, however, to employ numerical
methods esnd high-speed computing equipment to obtaln accurate sclutions
t0 the ordinery differentisl equations becsuse of thelr complex nature.

As this process is time-consuming and often laboriocus, it is of 1nterest
to determine whether or not approximate solutions to such equations might
be resdily obtained which would encompass & wide variety of boundary-

layer flows.

Certain steps in this direction ere taken in reference 9. In partic-
ular, epproximate solutions are obtained for the ordinary differential
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equations arising from the similarity solution of the boundary~layer
equations corresponding to the mainstream flows over & flat plate charac-

terized by
U =g (1a)

W = (const.) xP - (1b)

(All symbols are defined in appendix A. The orientation of the coordi-
nete axes is shown in Pfig. 1). The method of solution involves finding
an approximate solution of the equations corresponding to the region of
boundary-layer flow near the plate surface and then finding a separate
approximate solution in the reglon near the main stream. The two indi-~
viduel solutions are then Joined st a suitable polint between these two
regions (see also ref. 10, which advocates this technique). Comparison
of the spproximaste solutions of reference 9 with complete solutlons ob~
tained by relaxation techniques shows fairly good agreement when the value
of n in equation (1b) is large (e.g., n = 10). This corresponds to the
physical case of mainstream flows that flow for a distance wilthout appre~
cigble turning and then turn and accelerate rapidly, genersting strong
crossflows in the boundary layer.

The present investigetion glso considers gpproximete solutions of the
boundary-layer equations for the case of mainstream flows defined by equa~
tions (1). The reasons are twofold. First, although the approximate
solution follows the procedure (advocated in refs. 9 and 10) of finding
separate solutions of governing equations near the plete surface and near
the main stream, the method of solution for the flow region near the plate
gurface differs from that given in reference 9 and hence provides a tech-
nique of solution that is of interest in 1ts own right. The method pre-~
sented herein is designed to glve & more accurate approximstion in the
reglon nesr the plate surface and should yield improved estimetes of shear
stress and flow deflection st the surface.

Secondly, reference 5 has shown that boundary-layer solutions for
particular values of n in equation (Ib) can be linearly combined to
yield solutions of boundery-layer flows erising from meinstream flows
given by

U = U, (2a)
" .
W= apx® (2p)
n=0

Because of computing-machine and time limitations, reference 5 cobtains
solutions only for a range of values of n from 1 to 10. This restricts
the analysis to considerstion of main-flow streamline shepes that can be

LECT
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epproximated by eleventh-degree polynomials in x.

Provided accurste

approximate solutions can be obtained for values of n > 10, the analysis
of reference 5 could correspondingly be extended to include the calcula-
tion of boundary layers for main-flow streamline shapes requiring approx-

imating polynomials of degree

higher than 11. For example, such approxi-

meting polynomisls would be required for circulasr-arc flows having more

than 60° turning.

The results of the present investigation and the spproximate solu-

tions of reference 9 are both

compared with the exact solutions of refer-

ence 5, and the nature of both gpproximate solutions is discussed.

The work contained in this report is also included as part of a

larger study presented in a doctoral thesis (ref. 11).

Another portion

of this thesis 1s presented in reference 12.

ANATYSTS

The solution for the boundary-layer velocity components for main

Tlows over a flat surface defined by equations (2) is known to be

5)

W

where F(n) 1s the well~known

(ret.
u = UgF* (1) (3)
LY -m ()
- 3 etm (1) (5)

Blasius function satisfying the equation

FF“’

S +F"=0 (8)
where
U
n=yY o2
and P, satisfies the equation
FP}
Ph+—~-0F'P,+n=0 {7)
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The boundary conditions on equations (6) asnd (7) are

F(0) = F'(0) = Pp(0) =0 (&)
and - )

lim F*(q) = lim P (n) = 1 . (9)

Tpreo T

Solutions to equation (7) (flows -described by eqs. (2)) have been obteined
for 0 £n £ 10, Approximete solutions of equation (7) are now sought for
all n >10. To accomplish this, an approximate solution is first devel-
oped for large values of 7 (i.e., in the vicinity of the main stream).
Solutions are then found for small values of 1 (i.e., in the viecinity of
the bounding surface). These two solutions are then matched at a suiteble

value of 1.

Approximste Solution for Large 71

An gpproximate solution of equation (7) for large 1 @and large val-
ues of n 1is discussed in reference 13 and will be used in the present
investigation. Basically, the solution 1s cbtained as follows: For large
values of 1, it cen be shown that P and P} are necessarily small.

Hence, 1f n is large, equation (7) can be written as F'P, ~ 1; and,
therefore, the spproximste solution for large 17 and n can be glven by

1

Fr (10)

Pn=

Essgentlally the same result was obtained in reference 9 by considering

the upper part of the boundary layer to be a "nonviscous" region and find-
Ing a solution of the boundery-layer equations with the viscosity term
neglected. References 9 and 13 also point out that this approximate solu-
tion epplies over progressively wider ranges of values of 1 for prongres-
sively larger values of n.

Approximate Solution for Smell 1
In order to obiain an approximate solution of equation (7) for small
velues of 1, an adsptation of an analysis used in reference 14 to calcu-

late skin-friction coefficients will be employed. In this regard, a new
function £ (n) is defined, where %, 1s related to P, Dby the equation

P, SF'%, _ (11)

Substituting equation (11) into equation (7) and employing equation (6)
glve

LeeF
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fﬁF' + <2F" + F—g-f-)fﬁ - n(F')2Z = -n (12)

From the serlies expansion for the Blasius function F (see ref. 15, p.
104) it is now assumed thet F is adequately represented by

F =2 an? (@ = F*(0) = 0.33206)

in the neighborhood of 7 = 0. Furthermore, exasmination of the second
coefficient in equation (12) shows that FF! /2 is of the order of 13
relative to 2F"; and, hence, it is further assumed that in the neighbor-
hood of 1 =0 the coefficient can be replaced by 2F" = 20.. Equation
(12) can then be written as

2% -
.g'—.'n'.-l-—T]E-'- nang, =£ (13)

At present, these approximations will be assumed sufficilently accurate
for the purpose of the investigation. Later, results obtained from equa-
tion (13) are compasred with exact solutions in order to establish the
validity of the assumptions. ' :

The solution of equation (13) can now be obtained anslytically as
follows. Let

S = ¢ Hp(t) (148)

where

¢ = 2 adodif |  (14Db)
Substitution of equations (14) into equation (13) then ylelds
; 2 =i -
Eﬁ+%-<]§'-§2+l)ﬂn=-n3(g-) m‘fgl (15)
Consider the homogeneous complementary equation formed from equastion (15)
Eﬁ c l .9
E;;,c+—§1—- Fle+1 Bp,e =0 (18)
Equation (16) is a form of Bessel's equation and has the genersl solution

Bn,c = fply + BpKs (17)
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where I1 and K1 are Bessel functions of imeginary erguments (see ref.

16 for definitions and discussion)}. Tebles of these functions are given
in reference 17.

If the solution Hn,c of the complementary equation (16) is knowm,

the solution of equation (15) can be obtained by the method of varistion
of parameters. An analysis using this method ls presented in appendix
B, and the result is

¢ £
2 3\
B, = nfad (E) K% j; I_:é_ at - I% j; K% at + AnI%_ + BnK% (18)

Hence, from equations (18), (14), and (11), the solution for P, is

t
Pnrn) = Fl(n) g'%'n%a,"gx (ig-)m3 K%_ f I, df - I fg K1 af + ATy + BoKa
o ® s Jyg @ s 3
(19)

It is now recalled that, for regions near the wall, F(n) was assumed
to be adequately represented by the first term of its series expansiong
that is,

2

Using this approximation for F end using eguation (14b), the expression
for P, glven by equation (19) becomes

-2 £
n(g)—msns (%)GQ% KlfIl dg-I_;f Ki df + A Is + ByK,
s g ® s Jy @ 3 3
(20)

It is to be noted that equation (20) contains two arbitrary constants
A, and B,. One of these constants can be determined by the boundary

conditions P,(0) = O. Setting 1 equael to zero in equation (20) (equiv-
alent to setting { = 0) glves

28 =0 (21}
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where the series expensions for I%,(Q) and Ki(f) (ref. 16) are used in
E

determining the equation. It follows at once from equation (21) that
B, = 0.

The determination of the remsining constent A, depends upon the

matching of the solutions for large and smell 1 and is considered in
the following section.

Matching of Solutions

The matching of the solutions for lerge and smsll 7 consists in
finding a value of 7 where the values of P, and P} for both cases

can be brought into agreement. The equating of the functions and the
derivatives gives a system of two simulteneous equetions for the deter-
mingtion of 7 and the remaining erbitrary constant A,.

The value of d.Pn/ dn can be calculsted from equetlon (20) by taking

i

dar. dp. darp. s
n _ “ndf o—n L 2(3 Y

Differentiating equation (20) with respect to { gives

dPn'_Zﬂ;S%% L :fg
—dg-=d;3n3 -2— g '3"§ K!_s_'i'K% b I_:g_d.g—

¢
1, ] 1.
(3511%"%)[0 K%d“‘*n(sﬁl%”%) (23)

Now, from reference 16 (p. 79), the following relations are known:
Lelx, + K = Kz (24)
3 g ] ~3

% tl I, +IL =1 (25)
E] 8 8

Successive substitution of equations (24) end (25) into equation
(23), snd equation (23) into equation (22), gives
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ap 4
—?{% = -(x,"%n'g <.g)-% §§ (I_g j;g Kg_ dg + K__g J(; I% d.c - An I_g) (26)

The corresponding value of dIh/dn for the solution of the upper

region of the boundary layer is determined from equation (lO). Differ-
entisting equation (10) with respect to 1 glves

d.Pn 1

d_n = - (F|)2..Fu (27)

At this point, it is assumed that the equations can be matched in a re-
gion where F is reasonably epproximsted by F = an?/2. It will be
shown later thet this assumption ,wlll become increasingly accurate for
larger values of .-n. Uslng this approximation for F and equating equa-
tions (10) and (20) end equations (26) snd (27) give the following system
of simulteneous equations for A, and the matching point 7. (Actually,

the equstions are glven as functions of { and a matching value §} 1
can then be computed by means of the relatlon between { and 7 glven

by eq. (14b}.)

2 1 -%
o"an¥ (‘—;’-) c‘} (K-& _/(f Ié- ag - Ig_ ‘/O‘g K§ a€ + Ay, I%)

o s P 1
- g e (é) weas (29)

From equation (28) it follows that
C'l+I;ng1d§-K1flld§

8 o) E] 3 () 8
: (=)

Ap =

1
3
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Substituting equation (30) into equation (29) gives

S I-2 £ ¢ .
f Kg df + K.z I3 daf - Ia e 4+ Iéf Ky ag - Kéhf I& d§)=.3_§-2
o 0 3 0 0

(31)

I

Ora

The solution of equation (31), which gives the velue of { at which
the two solutions are matched, is outlined as follows: Multiplylng equa-
tion (31) through by I; end simplifying give

(Ié_K_g + Kél—-ﬁ) . ](; Ié_ a¢ - §"l I-ﬁ- = % C-z Ié— (32)

Now, LK. g + Kyl z = t=L (ref. 16, p. 80). Therefore, equation (32)

becomes
€
L a=Iz+2¢t (33)
0

Numericel solution of equation (33) gives
t=F =2.96 (3¢)

It follows that 7 1is given by

- 3.902
P T] = (35)

From the value of [ glven in equstion (34), it follows from equation
(30) that the value of A, is

A, =1.811 (38)

Calculation of Py{n) Curves

From equations (20), (36), and the fact that Bp = 0, Pp(n) can be
expressed



10 NACA TN 4375

B,(n) = n¥ q(f) (37)

where o

(2% ; ﬁ
QL) = a3 (.g.) ed (K§1; I at - I, _]; Ky 46 + 1.811 1%) (38)

Figure 2 shows & plot of Q(f) over the range 0S¢ <¥ =2.96. In
order to obtain a plot of Pn(n) for a glven velue of =n, it 1s necessary

merely to select values of 1, determine the corresponding values of ¢§
from equation (14b), find Q(f) from figure 2, and then determine P,(n)

from equation (37).

A plot of the varlation of 1 with ¢ is presented in figure 3 for
values of n equal to 10, 15, 20, and 50. Using these values of n and
figures 2 and 3, curves for Pn(n) vere calculated and are presented in

figure 4.
As a check on the vaelidlty of the approximate solutlon, values of

P1o(n) taken from reference 5 are plotted in figure 4. As the plot in-

dicates, the values of the aspproximste solution fall slightly below the
exact values for the "middle range" of 1 values but agree very well
for large 7m and for 1N near zero.

Flow Behavior Near Bounding Surface

Values of shear stress and limiting flow deflection near the bounding

surface are of major interest in the analysls of three-dimensionsal
boundary-layer flows. For the present case, both of these quantities can
be shown to depend upon P}(0) (see ref. 5). In the following section,

therefore, an expression for P!(0) is developed from equation (26), and

values obtained are compared with exact values from reference 5 and the
approximate solution of reference 9.

Determination of Pﬁ(o). -~ From reference 16, the following expres-
slons are noted:

+ higher-order terms

A
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1
kS E'g

—»:r
+ higher-order terms
V3 r(2
3

+ higher-order terms

5
3¢
Is = + higher-order terms

Hence,
<

+ higher-order terms

Employing (39) and (40) in equation (26) gives

-%
o gt [
B _ o35 [3)° 2 + higher-order terms
dn 2 r(ij
3

Therefore, at the wall where ¢ = O,

(éPn) ) a?éné'An
M/n=0 - r(% 3

The following table gives a comparison between the values calculsated
from equation (41) and the exact values computed in reference 5:

11

(38)

(40)

(41)
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It can be seen from the table that,

PL(0), exact
values from

ref.

5

QOUWoO~NoOud D H

i—l

1.
2.
2.
3.
3.
4,
4.
5.
5.
6.

418
197
858
450
995
506
989
449
891
317

NACA TN 4375

for n =8, 9, and 10, there 1s

an error of epproximetely 1/2 percent between the approximate solution

for Pﬁ(o) and the values presented in reference 5.

At this point it is of Interest to compare the values obtained for
Pﬁ(o) in the present analysis with those obtained by the approximetion

The method employed in the reference is bhased
on expressing Pn(n) as & cubic polynomial in 1 for small values of 1

and a8 Pp = l/F‘(n) for large values. The two solutions are matched in
a menner similaer to that presented in the present investigation. However,

technique in reference 9.

as would be expected, the matching point 7

analyses. In reference 9 the mstching point is given by

]

24 3
2619

-

1)

-1+

G,

—/

is not the same for the two

4

. (42)

It might be noted that, for very large values of n in equation (42),
T %3.6 n¥, This is to be compared with 7 = 3.902 n~? given in equa-

tion (35).

The analysis of reference 9 ylelds the following expression for

P (0):

P3(0) = :—L_-[
n

L =2
_+znn -

= -
3

ey ﬁs] (43)

LECF

3
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Figure 5 presents a plot of the values of Pﬁ(o) calculated from equation
(41) and from equation (43). The ten exact values of Pf(O) obtained in

reference 5 are also plotted to show the agreement with the approximate
solutions. The better agreement shown by the solution given in equation
(41) may be accounted for as follows. First of all, the coefficient of
A, 1in equation (41) is based on an exact solution of equation (13).

This is contrasted with the cublc polynomial representation in the neigh-
borhood of 1 = O presented in reference 8. However, this must be
welghed sgainst the neglecting of the term FF"[Z in the second coeffi-
cient of equation (12). For small 1 +this gpproximation 1ls reasonsgble.
Secondly, A, in equation (41) depends upon the value of T, or equiva-

lently C; and it might, therefore, be inferred that the value of P}(0)

would be criticslly influenced by the solution for large values of 1
and the corresponding mstching of the solutioms for large and smaell 1.
However, figure 6, which presents & plot of A, against f} shows that

the value of A, 1is relatively Insensitive to changes in Z for g wide
range of values. Hence, it would eppear that the determination of Pﬁ(o)

in the present analysis 1s principally affected by the accuracy of the
technique used to evaluate the functions 1n the neighborhood of 17 = 0.

Flow deflection at surface. ~ Assume that the mainstream velocity
components are defined by equations (2). Then, if y designates the loceal
engle of flow deflection at & point on the bounding surface of the flow,
it follows from equations (3) and (5) that

W
tanr:lima

g ST X B (n)
=73 Fr(n)
il: aXxp! (0)
= n=0 Fl'ios (4:4)

where ag = an/Ub and where L'Hospitsl's rule is used to evaluate the
indeterminate form P,(0}/F!(0).

As equation (41) hss been shown to yleld a reassonsble approximation
to PE(0) for all n, equation (44) cen be written as

ten v & é D xtin® (45)
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where
* aﬁ
*
by = 1.354 oY = 4.08 a,

FPor the speclal case
W:n:a,nxn
UHUO

equetion (45) becomes

tan v = brx"n®

(48)

(47)

Limiting streamline. - The equation for the "limlting streamline"
(1ine of limfting flow deflectlon, ref. 5) at the surface can be deter-

mined directly from the relation

dz
- - (E) . ,gb b
U Jyr=0
where Zy is the z=coordinate of the limiting stresmline.

Solution of equation (48) gives

n%
zq & gz; B* n-+1 =Tt constant

as the approximating equation of the limiting stresmline.

For flows defined by equation (46), equation (49) becomes

n+ 1

™~
zg = b xn+l ( ) + constant

Now, the main-flow streamlines for this case are given by

anxn+l

T + constant

If the constant of integration is chosen equal to zero, the ratio of

to z is glven by

(¢8)

(49)

23

cY
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zq bY
-Z—7' = ;%:_- n% = 4,08 n¥ (50)

Hence, the ordinates of the boundary-layer limiting streamline can be
determined at once from the ordinates of the main-flow streamline through

the origin merely by multiplying the latter by the scale factor 4.08 n%.
The entire system of limiting and main-flow streamlines can then be ob-
tained by translabtion parallel to the leading edge.

Shear stress at surface. = The shear stress gt the bounding surface
is given by

%o = Y (F0,)° + (%, )" (51)
vhere (using egs. (3) and (5) and the definition of 1)
T = (p, au) = }.LUOF" (O) Vﬁ"‘g' (52)
O,X 32-5 ¥=0 VX

m
3 U
ro, = (w ), = v g rralo) V52 (53)

It follows from equations (51), (52), (53), snd (41) that <5 can be
expressed as

2 m 2
Ty & %\/F" (0) + [EZJO XM (1,354 n%)] (54)

For flows defined by equation (48), equation (54) becomes

-]

oz

Ty ®
0
vx

of PE(0)nd + (¥)2(1.350 x1)2

Therefore, for sufficlently large values of n,

8
™

1
Ty ¥ ﬁ a.n(l.354-)xnn§
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CONCLUDING REMARKS

A method hes been developed for obtaining approximste solutlons of
the similarity equetions for three-dimensionel laminsr-boundary-layer
flows over e flet surface under main-flow streamlines thet are translates.
The approximate solution makes possible the analysis of flows having
gtreamline shapes representable by polynomials of any degree.

For the perticuler case of streamline shape described by =z = ax?,
relatively simple expressions can be found for flow deflection at the
surface, limiting streamline shape, and shear stress at the surface.

Comparison of the epproximate solution with exact solutions obtained
on high-speed computing equipment shows good agreement for vealues of
n = 10. In particular, the approximate solution in the vieinity of the
plate surface shows relatively good agreement with the exact solution for

all values of n.

ILewls Flight Propulsion Leboratory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, November 23, 1856
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Bn

bn
F,F(n)
37';1:35(7])
Hy,Hy(6)
Iv ,Kv
P,,P(n}

Q(¢)

U,W

APPENDIX A

SYMBOLS

constants of integration

constants
constants of integration

constants

Blasius function (eq. (8))

function of similarity parameter (eq. (11)})
function of ¢ (eq. (14a))

Bessel functions of imaginary argument (eq. (17))
constants

function of similarity parameter (eq. (7))

function of ¢ (eq. (38))

components of mainstream velocity in x- and z-directions,
respectively

inlet velocity of main stresanm

components of boundsry-lsyer velocity Iin x,y,z directions,
respectively

rectangular coordinstes
constant, = F"(0) = 0.33206
gamma function

flow deflection angle at surface

function of similarity parameter 0 (eq. (14b))
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1 similarity parameter, 7 = ¥y I\/m
M coefficient of absolute viscosity

v coefficient of kinemstic viscosity
To shear stress at wall

Subscripts:

e value of complementary function (eq. (16))
1 limiting

m constant

n index number

X,2 X~ and  z~caomponents, respectively
v order of Bessel functions
Superscripts:

' differentiation

* division by U (ref. 5)

- value at matching polint -

NACA TN 4375

LESF
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APPENDIX B

DERIVATION OF EQUATION (18)

Let s and sy be solutions of the homogeneous equation obtained
from

YY" + p(X)Y + q(X)Y = r(X) (B1)

by setting r equal to zero. Then, reference 18 shows that the general
integral of (Bl) is

I‘Sz 8

Y = -51 5 ax + s2 —§i dx

_ 1t
where S = 8,8, 5185

Applying this technique to equation (15) and using I% and Ki as
solutions of (16) give the following solution for Hp:

-.g K_gg-l 1;-1
H, = -ng(%) G.%I_é TR IR at + Ky -————LK?_ s & (82)
g E] g 3 3

Reference 16 shows that
-1
H - - -—
I%K% IéK% € (BS)

Substituting (B3) into (B2) then gives

A R

By expressing the integrals in equations (B4) as definite integrals with
additive constants, equation (18) is obtained.
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Figure 1. - Coordinate axes for flow over surface.
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Figure 6. - Varlation of A, wilth function ¢{ at matching point.
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